Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Br J Radiol ; : 20220191, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2245128

ABSTRACT

OBJECTIVES: To compare the experience of COVID-protected and mixed cohort pathways in COVID-19 transmission at a tertiary referral hospital for elective CT-guided lung biopsy and ablation during the COVID-19 pandemic. METHODS: From September 2020 to August 2021, patients admitted for elective thoracic intervention were treated at a tertiary hospital (Site 1). Site 1 received patients for extracorporeal membrane oxygenation (ECMO) and invasive ventilation in the treatment of COVID-19. Shared imaging, theater, and hallway facilities were used.From April 2020 to August 2020, patients admitted for elective thoracic intervention were treated at a COVID-protected hospital (Site 2). No patients with suspected or confirmed COVID-19 were treated at Site 2.Patients were surveyed for clinical and laboratory signs of COVID-19 infection up to 30 days post-procedure. RESULTS: At Sites 1 and 2, patients (2.4%) were tested positive for COVID-19 at 10 and 14 days post-procedure.At Site 2, there were no COVID-19 positive cases within 30 days of undergoing elective thoracic intervention. CONCLUSION: A mixed-site method for infection control could represent a pragmatic approach to the management of elective procedures during the COVID-19 pandemic or for similar illnesses. ADVANCES IN KNOWLEDGE: Mixed-cohort infection control is possible in the prevention of nosocomial COVID-19 infection.

2.
Thorax ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2229133

ABSTRACT

The optimal management of small but growing nodules remains unclear. The SUMMIT study nodule management algorithm uses a specific threshold volume of 200 mm3 before referral of growing solid nodules to the multidisciplinary team for further investigation is advised, with growing nodules below this threshold kept under observation within the screening programme. Malignancy risk of growing solid nodules of size >200 mm3 at initial 3-month interval scan was 58.3% at a per-nodule level, compared with 13.3% in growing nodules of size ≤200 mm3 (relative risk 4.4, 95% CI 2.17 to 8.83). The positive predictive value of a combination of nodule growth (defined as percentage volume change of ≥25%), and size >200 mm3 was 65.9% (29/44) at a cancer-per-nodule basis, or 60.5% (23/38) on a cancer-per-participant basis. False negative rate of the protocol was 1.9% (95% CI 0.33% to 9.94%). These findings support the use of a 200 mm3 minimum volume threshold for referral as effective at reducing unnecessary multidisciplinary team referrals for small growing nodules, while maintaining early-stage lung cancer diagnosis.

3.
ERJ Open Res ; 9(1)2023 Jan.
Article in English | MEDLINE | ID: covidwho-2229513

ABSTRACT

In situ pulmonary arterial thrombosis in COVID-19 is not visible on CTPA. However, the presence of CT-measured right heart and pulmonary artery dilatation in COVID-19 is likely attributable to this process and may be a possible surrogate for its detection. https://bit.ly/3g7z5TV.

4.
Lancet Public Health ; 8(2): e130-e140, 2023 02.
Article in English | MEDLINE | ID: covidwho-2211789

ABSTRACT

BACKGROUND: Lung cancer screening with low-dose CT reduces lung cancer mortality, but screening requires equitable uptake from candidates at high risk of lung cancer across ethnic and socioeconomic groups that are under-represented in clinical studies. We aimed to assess the uptake of invitations to a lung health check offering low-dose CT lung cancer screening in an ethnically and socioeconomically diverse cohort at high risk of lung cancer. METHODS: In this multicentre, prospective, longitudinal cohort study (SUMMIT), individuals aged 55-77 years with a history of smoking in the past 20 years were identified via National Health Service England primary care records at practices in northeast and north-central London, UK, using electronic searches. Eligible individuals were invited by letter to a lung health check offering lung cancer screening at one of four hospital sites, with non-responders re-invited after 4 months. Individuals were excluded if they had dementia or metastatic cancer, were receiving palliative care or were housebound, or declined research participation. The proportion of individuals invited who responded to the lung health check invitation by telephone was used to measure uptake. We used univariable and multivariable logistic regression analyses to estimate associations between uptake of a lung health check invitation and re-invitation of non-responders, adjusted for sex, age, ethnicity, smoking, and deprivation score. This study was registered prospectively with ClinicalTrials.gov, NCT03934866. FINDINGS: Between March 20 and Dec 12, 2019, the records of 2 333 488 individuals from 251 primary care practices across northeast and north-central London were screened for eligibility; 1 974 919 (84·6%) individuals were outside the eligible age range, 7578 (2·1%) had pre-existing medical conditions, and 11 962 (3·3%) had opted out of particpation in research and thus were not invited. 95 297 individuals were eligible for invitation, of whom 29 545 (31·0%) responded. Due to the COVID-19 pandemic, re-invitation letters were sent to only a subsample of 4594 non-responders, of whom 642 (14·0%) responded. Overall, uptake was lower among men than among women (odds ratio [OR] 0·91 [95% CI 0·88-0·94]; p<0·0001), and higher among older age groups (1·48 [1·42-1·54] among those aged 65-69 years vs those aged 55-59 years; p<0·0001), groups with less deprivation (1·89 [1·76-2·04] for the most vs the least deprived areas; p<0·0001), individuals of Asian ethnicity (1·14 [1·09-1·20] vs White ethnicity; p<0·0001), and individuals who were former smokers (1·89 [1·83-1·95] vs current smokers; p<0·0001). When ethnicity was subdivided into 16 groups, uptake was lower among individuals of other White ethnicity than among those with White British ethnicity (0·86 [0·83-0·90]), whereas uptake was higher among Chinese, Indian, and other Asian ethnicities than among those with White British ethnicity (1·33 [1·13-1·56] for Chinese ethnicity; 1·29 [1·19-1·40] for Indian ethnicity; and 1·19 [1·08-1·31] for other Asian ethnicity). INTERPRETATION: Inviting eligible adults for lung health checks in areas of socioeconomic and ethnic diversity should achieve favourable participation in lung cancer screening overall, but inequalities by smoking, deprivation, and ethnicity persist. Reminder and re-invitation strategies should be used to increase uptake and the equity of response. FUNDING: GRAIL.


Subject(s)
COVID-19 , Lung Neoplasms , Adult , Male , Humans , Female , Aged , State Medicine , Early Detection of Cancer , Prospective Studies , Lung Neoplasms/diagnostic imaging , Longitudinal Studies , Pandemics , England/epidemiology , Cohort Studies , Lung , Risk Factors , Tomography, X-Ray Computed
5.
ERJ open research ; 2022.
Article in English | EuropePMC | ID: covidwho-2168101

ABSTRACT

There have been over 481 million cases of Coronavirus Disease-19 (COVID-19), caused by the SARS-CoV-2 virus worldwide since December 2019 [1]. One of the hallmark features of acute COVID-19 pneumonia is pulmonary vascular involvement, most commonly manifesting as pulmonary artery thrombosis (PAT) [2, 3]. Post-mortem data in ten patients with COVID-19 pneumonia shows their central pulmonary arteries were free of thrombosis but all patients had small, firm thrombi in the peripheral parenchyma [4]. These findings raise the possibility that the CT finding of isolated subsegmental PAT may reflect "the tip of the iceberg”;that small segmental thrombi may reflect downstream in situ thrombosis in the microvasculature. In patients with severe COVID-19 pneumonitis, Dual-Energy CTPA (DECTPA) has been used to demonstrate reduced pulmonary perfusion in the absence of any visible central thromboembolism [5, 6], further supporting the view that microscopic PAT is prevalent [6].

6.
Sci Transl Med ; 14(671): eabo5795, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2119264

ABSTRACT

Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications.


Subject(s)
COVID-19 , Extracellular Traps , Humans , SARS-CoV-2 , Neutrophils , Lung
8.
Immunity ; 55(3): 542-556.e5, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1768197

ABSTRACT

Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Monocytes/immunology , Respiration Disorders/immunology , Respiratory System/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , COVID-19/complications , Female , Follow-Up Studies , Humans , Immunity, Cellular , Immunoproteins , Male , Middle Aged , Proteome , Respiration Disorders/etiology , Respiratory System/pathology
9.
BMJ Open Respir Res ; 9(1)2022 02.
Article in English | MEDLINE | ID: covidwho-1673454

ABSTRACT

OBJECTIVES: Lung cancer screening programmes offer an opportunity to address tobacco dependence in current smokers. The effectiveness of different approaches to smoking cessation in this context has not yet been established. We investigated if immediate smoking cessation support, including pharmacotherapy, offered as part of a lung cancer screening programme, increases quit rates compared to usual care (Very Brief Advice to quit and signposting to smoking cessation services). MATERIALS AND METHODS: We conducted a single-blind randomised controlled trial of current smokers aged 55-75 years attending a Targeted Lung Health Check. On randomly allocated days smokers received either (1) immediate support from a trained smoking cessation counsellor with appropriate pharmacotherapy or (2) usual care. The primary outcome was self-reported quit rate at 3 months. We performed thematic analysis of participant interview responses. RESULTS: Of 412 people attending between January and March 2020, 115 (27.9%) were current smokers; 46% female, mean (SD) 62.4 (5.3) years. Follow-up data were available for 84 smokers. At 3 months, quit rates in the intervention group were higher 14/48 (29.2%) vs 4/36 (11%) (χ2 3.98, p=0.04). Participant interviews revealed four smoking-cessation related themes: (1) stress and anxiety, (2) impact of the COVID-19 pandemic, (3) CT scans influencing desire to quit and (4) individual beliefs about stopping smoking. CONCLUSION: The provision of immediate smoking cessation support is associated with a substantial increase in quit rates at 3 months. Further research is needed to investigate longer-term outcomes and to refine future service delivery. TRIAL REGISTRATION NUMBER: ISRCTN12455871.


Subject(s)
COVID-19 , Lung Neoplasms , Smoking Cessation , Aged , Cost-Benefit Analysis , Early Detection of Cancer , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , SARS-CoV-2 , Single-Blind Method , Smokers
11.
Radiology ; 303(2): 444-454, 2022 05.
Article in English | MEDLINE | ID: covidwho-1450625

ABSTRACT

Background Data on the long-term pulmonary sequelae in COVID-19 are lacking. Purpose To assess symptoms, functional impairment, and residual pulmonary abnormalities on serial chest CT scans in COVID-19 survivors discharged from hospital at up to 1-year follow-up. Materials and Methods Adult patients with COVID-19 discharged between March 2020 and June 2020 were prospectively evaluated at 3 months and 1 year through systematic assessment of symptoms, functional impairment, and thoracic CT scans as part of the PHENOTYPE study, an observational cohort study in COVID-19 survivors. Lung function testing was limited to participants with CT abnormalities and/or persistent breathlessness. Bonferroni correction was used. Results Eighty participants (mean age, 59 years ± 13 [SD]; 53 men) were assessed. At outpatient review, persistent breathlessness was reported in 37 of the 80 participants (46%) and cough was reported in 17 (21%). CT scans in 73 participants after discharge (median, 105 days; IQR, 95-141 days) revealed persistent abnormalities in 41 participants (56%), with ground-glass opacification (35 of 73 participants [48%]) and bands (27 of 73 participants [37%]) predominating. Unequivocal signs indicative of established fibrosis (ie, volume loss and/or traction bronchiectasis) were present in nine of 73 participants (12%). Higher admission serum C-reactive protein (in milligrams per liter), fibrinogen (in grams per deciliter), urea (millimoles per liter), and creatinine (micromoles per liter) levels; longer hospital stay (in days); older age (in years); and requirement for invasive ventilation were associated with CT abnormalities at 3-month follow-up. Thirty-two of 41 participants (78%) with abnormal findings at 3-month follow-up CT underwent repeat imaging at a median of 364 days (range, 360-366 days), with 26 (81%) showing further radiologic improvement (median, 18%; IQR, 10%-40%). Conclusion CT abnormalities were common at 3 months after COVID-19 but with signs of fibrosis in a minority. More severe acute disease was linked with CT abnormalities at 3 months. However, radiologic improvement was seen in the majority at 1-year follow-up. ClinicalTrials.gov identifier: NCT04459351. © RSNA, 2022 Online supplemental material is available for this article.


Subject(s)
COVID-19 , Patient Discharge , COVID-19/diagnostic imaging , Dyspnea , Fibrosis , Hospitals , Humans , Lung/diagnostic imaging , Tomography, X-Ray Computed
12.
Radiol Cardiothorac Imaging ; 2(5): e200428, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1356976

ABSTRACT

BACKGROUND: The role of dual energy computed tomographic pulmonary angiography (DECTPA) in revealing vasculopathy in coronavirus disease 2019 (COVID-19) has not been fully explored. PURPOSE: To evaluate the relationship between DECTPA and disease duration, right ventricular dysfunction (RVD), lung compliance, D-dimer and obstruction index in COVID-19 pneumonia. MATERIALS AND METHODS: This institutional review board approved this retrospective study, and waived the informed consent requirement. Between March-May 2020, 27 consecutive ventilated patients with severe COVID-19 pneumonia underwent DECTPA to diagnose pulmonary thrombus (PT); 11 underwent surveillance DECTPA 14 ±11.6 days later. Qualitative and quantitative analysis of perfused blood volume (PBV) maps recorded: i) perfusion defect 'pattern' (wedge-shaped, mottled or amorphous), ii) presence of PT and CT obstruction index (CTOI) and iii) PBV relative to pulmonary artery enhancement (PBV/PAenh); PBV/PAenh was also compared with seven healthy volunteers and correlated with D-Dimer and CTOI. RESULTS: Amorphous (n=21), mottled (n=4), and wedge-shaped (n=2) perfusion defects were observed (M=20; mean age=56 ±8.7 years). Mean extent of perfusion defects=36.1%±17.2. Acute PT was present in 11/27(40.7%) patients. Only wedge-shaped defects corresponded with PT (2/27, 7.4%). Mean CTOI was 2.6±5.4 out of 40. PBV/PAenh (18.2 ±4.2%) was lower than in healthy volunteers (27 ±13.9%, p = 0.002). PBV/PAenh correlated with disease duration (ß = 0.13, p = 0.04), and inversely correlated with RVD (ß = -7.2, p = 0.001), persisting after controlling for confounders. There were no linkages between PBV/PAenh and D-dimer or CTOI. CONCLUSION: Perfusion defects and decreased PBV/PAenh are prevalent in severe COVID-19 pneumonia. PBV/PAenh correlates with disease duration and inversely correlates with RVD. PBV/PAenh may be an important marker of vasculopathy in severe COVID-19 pneumonia even in the absence of arterial thrombus.

14.
Crit Care Med ; 49(5): 804-815, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1075628

ABSTRACT

OBJECTIVES: Severe coronavirus disease 2019 is associated with an extensive pneumonitis and frequent coagulopathy. We sought the true prevalence of thrombotic complications in critically ill patients with severe coronavirus disease 2019 on the ICU, with or without extracorporeal membrane oxygenation. DESIGN: We undertook a single-center, retrospective analysis of 72 critically ill patients with coronavirus disease 2019-associated acute respiratory distress syndrome admitted to ICU. CT angiography of the thorax, abdomen, and pelvis were performed at admission as per routine institution protocols, with further imaging as clinically indicated. The prevalence of thrombotic complications and the relationship with coagulation parameters, other biomarkers, and survival were evaluated. SETTING: Coronavirus disease 2019 ICUs at a specialist cardiorespiratory center. PATIENTS: Seventy-two consecutive patients with coronavirus disease 2019 admitted to ICU during the study period (March 19, 2020, to June 23, 2020). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: All but one patient received thromboprophylaxis or therapeutic anticoagulation. Among 72 patients (male:female = 74%; mean age: 52 ± 10; 35 on extracorporeal membrane oxygenation), there were 54 thrombotic complications in 42 patients (58%), comprising 34 pulmonary arterial (47%), 15 peripheral venous (21%), and five (7%) systemic arterial thromboses/end-organ embolic complications. In those with pulmonary arterial thromboses, 93% were identified incidentally on first screening CT with only 7% suspected clinically. Biomarkers of coagulation (e.g., d-dimer, fibrinogen level, and activated partial thromboplastin time) or inflammation (WBC count, C-reactive protein) did not discriminate between patients with or without thrombotic complications. Fifty-one patients (76%) survived to discharge; 17 (24%) patients died. Mortality was significantly greater in patients with detectable thrombus (33% vs 10%; p = 0.022). CONCLUSIONS: There is a high prevalence of thrombotic complications, mainly pulmonary, among coronavirus disease 2019 patients admitted to ICU, despite anticoagulation. Detection of thrombus was usually incidental, not predicted by coagulation or inflammatory biomarkers, and associated with increased risk of death. Systematic CT imaging at admission should be considered in all coronavirus disease 2019 patients requiring ICU.


Subject(s)
COVID-19/complications , COVID-19/diagnostic imaging , Computed Tomography Angiography , Critical Illness , Thrombosis/diagnostic imaging , Thrombosis/etiology , Adult , Aged , Female , Humans , Intensive Care Units , Length of Stay/statistics & numerical data , Male , Middle Aged , Mortality , Patient Discharge/statistics & numerical data , Prevalence , Retrospective Studies , SARS-CoV-2
16.
Br J Radiol ; 94(1117): 20200994, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-947957

ABSTRACT

OBJECTIVES: In accordance with initial guidance from the Royal College of Surgeons and Royal College of Radiologists, we evaluated the utility of CT of the chest in the exclusion of asymptomatic COVID-19 infection prior to elective cancer surgery on self-isolating patients during the pandemic. METHODS: All surgical referrals without symptoms of COVID-19 infection in April and May 2020 were included. Patient records were retrospectively reviewed. Screening included CT chest for major thoracic and abdominal surgery. CTs were reported according to British Society of Thoracic Imaging guidelines and correlated with reverse transcriptase polymerase chain reaction (RT-PCR) and surgical outcomes. RESULTS: The prevalence of RT-PCR confirmed COVID-19 infection in our screened population was 0.7% (5/681). 240 pre-operative CTs were performed. 3.8% (9/240) of CTs were reported as abnormal, only one of which was RT-PCR positive. 2% (5/240) of cases had surgery postponed based on CT results. All nine patients with CTs reported as abnormal have had surgery, all without complication. CONCLUSION: The prevalence of asymptomatic COVID-19 infection in our screened population was low. The pre-test probability of CT chest in asymptomatic, self-isolating patients is consequently low. CT can produce false positives in this setting, introducing unnecessary delay in surgery for a small proportion of cases. ADVANCES IN KNOWLEDGE: Self-isolation, clinical assessment and RT-PCR are effective at minimising COVID-19 related surgical risk. The addition of CT chest is unhelpful. Our data have particular relevance during the second wave of infection and in the recovery phase.


Subject(s)
Asymptomatic Infections , COVID-19/diagnostic imaging , Elective Surgical Procedures , Neoplasms/surgery , Tomography, X-Ray Computed , Adult , Aged , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged , Patient Isolation , Preoperative Period , Retrospective Studies , Thorax , United Kingdom
17.
Thorax ; 75(11): 1009-1016, 2020 11.
Article in English | MEDLINE | ID: covidwho-729414

ABSTRACT

The COVID-19 pandemic has led to an unprecedented surge in hospitalised patients with viral pneumonia. The most severely affected patients are older men, individuals of black and Asian minority ethnicity and those with comorbidities. COVID-19 is also associated with an increased risk of hypercoagulability and venous thromboembolism. The overwhelming majority of patients admitted to hospital have respiratory failure and while most are managed on general wards, a sizeable proportion require intensive care support. The long-term complications of COVID-19 pneumonia are starting to emerge but data from previous coronavirus outbreaks such as severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) suggest that some patients will experience long-term respiratory complications of the infection. With the pattern of thoracic imaging abnormalities and growing clinical experience, it is envisaged that interstitial lung disease and pulmonary vascular disease are likely to be the most important respiratory complications. There is a need for a unified pathway for the respiratory follow-up of patients with COVID-19 balancing the delivery of high-quality clinical care with stretched National Health Service (NHS) resources. In this guidance document, we provide a suggested structure for the respiratory follow-up of patients with clinicoradiological confirmation of COVID-19 pneumonia. We define two separate algorithms integrating disease severity, likelihood of long-term respiratory complications and functional capacity on discharge. To mitigate NHS pressures, virtual solutions have been embedded within the pathway as has safety netting of patients whose clinical trajectory deviates from the pathway. For all patients, we suggest a holistic package of care to address breathlessness, anxiety, oxygen requirement, palliative care and rehabilitation.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/therapy , Lung Diseases/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Respiration Disorders/therapy , Algorithms , COVID-19 , Coronavirus Infections/diagnosis , Humans , Lung Diseases/diagnosis , Lung Diseases/virology , Pandemics , Pneumonia, Viral/diagnosis , Respiration Disorders/diagnosis , Respiration Disorders/virology , SARS-CoV-2
19.
Am J Respir Crit Care Med ; 202(5): 690-699, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-646801

ABSTRACT

Rationale: Clinical and epidemiologic data in coronavirus disease (COVID-19) have accrued rapidly since the outbreak, but few address the underlying pathophysiology.Objectives: To ascertain the physiologic, hematologic, and imaging basis of lung injury in severe COVID-19 pneumonia.Methods: Clinical, physiologic, and laboratory data were collated. Radiologic (computed tomography (CT) pulmonary angiography [n = 39] and dual-energy CT [DECT, n = 20]) studies were evaluated: observers quantified CT patterns (including the extent of abnormal lung and the presence and extent of dilated peripheral vessels) and perfusion defects on DECT. Coagulation status was assessed using thromboelastography.Measurements and Results: In 39 consecutive patients (male:female, 32:7; mean age, 53 ± 10 yr [range, 29-79 yr]; Black and minority ethnic, n = 25 [64%]), there was a significant vascular perfusion abnormality and increased physiologic dead space (dynamic compliance, 33.7 ± 14.7 ml/cm H2O; Murray lung injury score, 3.14 ± 0.53; mean ventilatory ratios, 2.6 ± 0.8) with evidence of hypercoagulability and fibrinolytic "shutdown". The mean CT extent (±SD) of normally aerated lung, ground-glass opacification, and dense parenchymal opacification were 23.5 ± 16.7%, 36.3 ± 24.7%, and 42.7 ± 27.1%, respectively. Dilated peripheral vessels were present in 21/33 (63.6%) patients with at least two assessable lobes (including 10/21 [47.6%] with no evidence of acute pulmonary emboli). Perfusion defects on DECT (assessable in 18/20 [90%]) were present in all patients (wedge-shaped, n = 3; mottled, n = 9; mixed pattern, n = 6).Conclusions: Physiologic, hematologic, and imaging data show not only the presence of a hypercoagulable phenotype in severe COVID-19 pneumonia but also markedly impaired pulmonary perfusion likely caused by pulmonary angiopathy and thrombosis.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Lung/blood supply , Pneumonia, Viral/complications , Pulmonary Circulation/physiology , Vascular Diseases/etiology , Adult , Aged , COVID-19 , Coronavirus Infections/epidemiology , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Tomography, X-Ray Computed , Vascular Diseases/diagnosis , Vascular Diseases/physiopathology
20.
Eur Radiol ; 30(7): 3599, 2020 07.
Article in English | MEDLINE | ID: covidwho-143825
SELECTION OF CITATIONS
SEARCH DETAIL